
7 

There follows from the boundary condition (3.1) 

] n ~  : - - 2 M q y l - - ~ p ~  z) ~ 

The n o r m a l  p r e s s u r e  on t h e  w e d g e  f a c e  i s  e x p r e s s e d  i n  t h e  f o r m  

,n +o 

The p r e s s u r e  c h a n g e  on t h e  w e d g e  f a c e  i s  shown i n  F i g .  3 f o r  p= = 0 . 3  and  q = 0 . 1  a s  a 
f u n c t i o n  o f  t h e  v e l o c i t y  o f  w e d g e  p e n e t r a t i o n ,  We o b t a i n  t h e  m i n i m a l  p r e s s u r e  i n  t h e  e l a s -  
t i c  s o l u t i o n  f o r  M = = 1 . 1 8 .  As M d e c r e a s e s  a n d  i n c r e a s e s  t h e  p r e s s u r e  r i s e s ,  A t  t h e  v a l u e  
M = = 9 9 . 8 2  p l a s t i c  f l o w  s e t s  i n  a t  t h e  w e d g e  f a c e  ( t h e  d o m a i n  b 0 c  i n  F i g .  1) a n d  t h e  p r e s s u r e  
growth is terminated. For M = = 100.20 plasticity sets in even in the domain aOb. Later the 
pressure grows in proportion to M as M increases. 
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THEORY OF IDEAL PLASTICITY OF MULTICOMPONENT MIXTURES 

L. A. Saraev UDC 539.4 

I. We consider a rigidly plastic micro-inhomogeneous isotropic medium consisting of n 
different components interconnected by ideal adhesion. Let the plastic properties of each 
component be described by the surface flow taking the hydrostatic pressure into account 

2 = k 2 i , 2 ,  . . . , n ,  s~js{j + as~pp ~, s : 

where sij = ~i" -- 6ij~ ~ is the stress tensor, k s are the component yield points, and 
a s are parameters characterizing their volume compressibility. 

The structure of such a medium can be described by a system of random indicator functions 
of the coordinates •215 ..... • from which each function • equals unity on a set of points 
of the s-th component and equals zero outside this set. By using these functions the local 
associated flow law of the composite material under consideration can be written in the form 

[ l  ] eij (r) - -  6~jb (r) epp (r) 

~ij (r) = k (r) Veil (r) ehl (r) -- b (r) e~p (r) ' (i. i) 

n 
where Eij(r ) is the strain rate tensor; k(r)= ~ks%(r); and 
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b( r )=  Zb~s ( r ) ;  bs=(3as--i)/ga ,. 

All the functions • the stress and strain rate tensors are assumed statistically homo- 

geneous and ergodic fields, and their mathematical expectations agree with the components aver- 
aged over the volumes V s and over the total volume of the medium V = V~ + V= + ... + V n [2]: 

<('")>=-V'"i I ( ' " )dr '  <( ' " )> ' :Ts  ! ("')dr' s = i ' 2 s  . . . . .  n. 

We replace the dissipative function by its mean value D = <~i3. eij> in the total volume V 
in (1.1) for the associated flow law of the medium. This assumption linearizes the relation- 
ship between the local stochastic stress and strain rate fields, and the relationship (1.1) 
takes the form [i]: 

D~ij(r) = ~ ( r ) e i i ( r ) -  ~(r)b(r)6i~epp(r ). ( 1 . 2 )  

S u b s t i t u t i n g  t he  l o c a l  g o v e r n i n g  e q u a t i o n s  ( 1 . 2 )  i n t o  t h e  e q u i l i b r i u m  e q u a t i o n  o i j , j  = O, 
we o b t a i n  

2 ! r kleij,j -- k~ble;p,i -- Tij,j = O, 
n (1.3) 

2: 8,j = q ,  

[ksb s]  = ksb s -  k~bx,  t h e  p r i m e s  d e n o t e  f l u c t u a t i o n  of  the  q u a n t i t i e s  i n  the  volume V. Append- 
i ng  t h e  Cauchy f o r m u l a  2 s i j  = v i ,  j + v j , i ,  r e l a t i n g  the  d i s p l a c e m e n t  v e l o c i t y  v e c t o r  components  
v i ( r )  to  t he  s t r a i n  r a t e  t e n s o r  componen t s ,  to  ( 1 . 3 ) ,  we o b t a i n  a c l o s e d  sys t em o f  e q u a t i o n s  
f o r  t he  f l o w  o f  a m u l t i c o m p o n e n t  m i x t u r e  f o r  which  t h e  bounda ry  c o n d i t i o n s  a r e  the  c o n d i t i o n s  
o f  no f l u c t u a t i o n s  o f  q u a n t i t i e s  on uhe s u r f a c e  of  t h e  volume V. We i n t r o d u c e  t h e  G r e e n ' s  
t e n s o r  

i l , (r)= 6ihr,p p - ~ r , i h  , r : ] r [ ,  

wh ich  i s  u se d  to  r e d u c e  t h e  e q u i l i b r i u m  e q u a t i o n  o f  t h e  medium to  a sy s t em  of  i n t e g r a l  equa -  
t i o n s  [i] 

e~j (r) = ,f G~kd)J (r -- rl) ~z (rl) dr1' ( 1 . 4 )  
V 

To determine the effective constants of the multicomponent mixture, a relationship must be 
established between the macroscopic stresses and strain rates. Let us take the average of 
the relationship (1.2) over the whole body volume V and let us apply the rule of mechanical 

mixing of the phases 

<%> = ~ k~ (<~j>~ - 8~jb, <~p>,), (l. 5) 

where c s = Vs V-x are the bulk contents of tile components. Equations (1.5) show that to estab- 
lish a macroscopic rheological law it is required to calculate the strain rate averaged over 
the component volumes and the mean energy dissipation density D. The quantities <Eij> s can 

be found from the relationships [3] 

<cO> s = <si.~> + c~ -I <• ( i .  6 )  

Let us calculate the quantity <~'se',~> . We multiply (1.4) by • and take the average over 

the whole volume V: 

<"',~J> = I G~ ~, (~.) <.: (,) ~'~ (~ + ,i)> d,~. 
V 

In evaluating the integral on the right side, we limit ourselves to a singular approximation 
by omitting the formal parts of the second derivatives of the Green's tensor; then [3, 4] 

, , ' , 2 ( 1 . 7 )  < ~ i J >  = (%l~kz - -  ~16~J6kz) < • 

Here a~ = 2(4 -- 3b~)/15(i -- b~); B~ = (i -- 2b~)/15(i -- b~); Iijkl is the unit tensor. Sub- 
stituting the expression for Tij into (1.7) and extracting the volume and deviator parts, we 

find 
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' ' <%• 1, ( 1 . 8 )  
, = 1  



n 
v v :-- __ o # ]e~ 

<~-~vu> (=~ 3 % ) y ~  ( [ s 2 1 5  

where eij = eij --(i/3)6ijSpp- Eliminating the quantity <z~e'ij > from (1.6) and (1.8) and taking 
into account the relationships 

, , f ~E (</> - </>~ - <E), q ~ ~, 

, , f - -  eqes ,  q =/= s ,  

<Zq~s> = t q ( ~ - - c ~ ) '  q =  ~' 

we express the strain rate components averaged over the volume in terms of the macroscopic 

quantities 

= + ' 

I , 2  v~n <%> ~- ~ (~ - -  3,oJ (~ - -  h )  <%> 
2 __ 361)  2 2 ' <Spp>q ] ~ 1 (  j" d-?~([kq]--3[kqbq]) 
?~ : ( 3 b ~ -  l)/3(b~ - -  t). 

( 1 . 9 )  

Substituting (1.9) 

Here 

into 

( L - - % ) B ~  . . 

= 0 - 3<) 

(1.5) and separating it into volume and deviator parts, we obtain 

(1 .1o)  

We now evaluate the quantity D. We use the equilibrium integral equation for the medium, 
written in fluctuations 

v 

from which D = <qij><sij> follows. Hence eliminating the mean strain rates <sij>, and from 
(i.i0) also, we find the macroscopic flow surface of the medium 

<sij><su > + a,<~;~>2 = k,2. (i. 12) 

Here 

 =K4 a, - (i.13) ' 3 (~ - ~A~) (1 -- %) (1 -- 3bJ B~ 

are the effective yield point and a parameter characterizing the macroscopic compressibility 
of the composite material. 

Formulas for the effective constants k*, a* show that the model constructed corresponds 
to a composite medium for which the first component is the binding matrix while the remaining 
components are distributed therein as separate inclusions. Thus, if we set k~ = 0, then k* 
vanishes identically, but if kl # 0, then for any k s = 0 (s = 2, 3, ... , n) the effective 
yield point is not zero identically. For n = 2 the formulas for k* and a* agree with the ex- 
pressions for the effective constants of an ideally plastic two-phase medium obtained in [I]. 

As a particular case of the general formulas (1.13), we consider a porous medium whose 
plastically incompressible host material contains an absolutely rigid inclusion. Let V~ be 
the volume of the host for which a~=0, ~i =0.4,FI = i; V2 is the pore volume (k2 =0), V3 is 
the volume of the rigid inclusions (kb§ Then Ai = ci +2.5c3, Bi =cI + c~, and the flow 
surface for such a medium takes the form: 

c 2 (2  - -  2c  2 --}- 3 c a )  3 ( 2  - -  2c  2 -+. 3c3)  ( 1 . 1 4 )  

%D <%> ~ 2 ~l - q )  (6 ~- % - 3%) <%~>2 = k~ 6 + 4% - 3% 

For c~ = 0 (no rigid phase), Eq. (1.14) agrees with the expression for the flow surface of 
a porous medium [i]. 
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2. In constructing and fabricating multicomponent composite materials, the binding host 
can be formed by several rather than just one component. For example, a material is obtained 
as a result of impregnating sintered tungsten powder by a copper melt, in which both phases 
form a splicing of interpenetrating skeletons. The formulas (1.13) cannot describe the be- 
havior of such multicomponent media. Another method of taking the average of the system of 
equilibrium equations is required to estimate their mechanical properties [5]. 

We separate all the components of the composite materials into two groups by consider- 
ing that the first m components possess an identical coherence and form a matrix of inter- 
penetrating skeletons while the remaining n -- m components are distributed in this matrix in 
the form of individual inclusions. Denoting the mean values of the constants in the matrix 

volume by 
m m 

we w r i t e  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 . 1 3 )  i n  t h e  f o r m  

1~ } ~,~ - 1~ ~} ~ , ~ -  ~ , ~  = o,  

- z~ = ~ (q~ - ~%~) us + 
$=i 

By using the Green's tensor 

(~ihr,pp Gi~ (r) -- 8a~ {k 2} 

~ (~iJ - ~?~'~A ~" 

1 ~ }  _ {~2b} ~,~) 

(2.1) 

the system (2.1) is reduced to a system of integral equations 

e~j (r) ---- Gi@,z)j (r - -  rl) %~z (rl) dr1" ( 2 . 2 )  
v 

Evaluation of the quantity <x~et~j> by using the singular approximation hypothesis in (2.2) yields 

i r p t ' ~ k2 <• = (a <• -- 5ij~ <%~pp>)/{ }- (2.3) 

Here 

�9 ~ = (21~)  ({k 2} - a {k~b})/({~ 2} - {k%}), 

= (~/~5} ( { k q  - 2 {k%})/({k 2} - -  {k2b}). 

We determine the strain rate components averaged over the volume from (1.6) and (2.3) 

aD <sij> q- (1 -- ~) {k 2} <eij> 

<e~J>s = {k ~} (i + a (ms -- i)) ' (2.4) 

?D <~pp> ~- (i -- ~) ({k 2} -- 3 {k2b}) <Spp> 

Here 2 (k~ - a@O/({kq - a {k~b}); .,~ = k~/{~  }, q~ = 

= ({k 2} - a {k%})/a ({k 2} - { k%}). 

Substituting (2.4) into (1.5) and extracting the deviator and volume parts result in the ex- 

pressions 
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Here 

(t - -a)  A 
D <s j> : {k 2} {'~-2~'---r-" ~ <eij>, 

(i -- ~ B 

<%> = ({~:}- 3 {~}) g~} - ~ _  v, <~p~> 

(2.5) 

n 2 

A = hscs " B = 
t ~ (m~ - 1) , ~  t + v(% - q " 

The macroscopic flow surface of the medium is found by eliminating the quantities D and <Eij> 
from (I.ii) and (2.5), and has the form (1.12). The effective constants of the composite 

material are determined from the formulas 

v f  (~ --c:) A 
k, = W }  ( - ? F - - ~ '  ( 2 . 6 )  

(t - ~) {~} .4 ({kD - a {-k~b} -- VB) 
a (t - v)((~ ~-} - a Wb}) B ({k'} - ~a)" 

As a result the effective constants of a porous medium whose host material is formed by 
two plastic incompressible interpenetrating components can be obtained from the general for- 
mulas (2.6). Setting m = 2, n = 3, al = a2 = 0, k3 = 0 into the relations (2.6), we find 

f t %  (3~, + p~q) 
k* = k l v  i ~ ' 5 (2p + 3v) (2pq + 3v)'-- i0v (3v + p q) ( 2 . 7 )  

"~ ~ p = C l + q c 2  v = l - - e  3. ~* = k *~ ( i -  , ) / % k ~ L  q = k z /k ~ ,  ~ , 

Let us apply (1.13) and (2.6) to a computation of the effective yield point of a two- 
phase medium whose components are plastically incompressible. Setting al = a= = 0 into (1.13) 
and (2.6), we obtain the quantity a* -= 0, from which there follows that both composites are 
macroscopically plastically incompressible. Moreover, the relationships 

~ = ~ =o ,4 ,  {k ~} = <ks> = ~?~ + ~k~, 

5c2k ~ 
k~ k S 

, ~ , = k , / ( ~  ~+~.~ ~). A ~ = ~ + S k ~ + 2 ( k ~ _ k i ~  ), 

A - 5%k~ ~ 5~2k ~ 
2 + 5 ( , q -  1) 2 + 5 ( , h - ~  ) 

hold. The macroscopic flow surface (1.12) takes the form 

where 

<sii><siT> = k*2, 

k* =k~ i + S k ~ + . z ~ ( k ~ _ ~  D 

is the effective yield point of the composite with individual inclusions, and 

( 2 . 8 )  

• /  . . . . .  2~% (k,~ - k~)~ ( 2 . 9 )  

is the effective yield point of a composite material formed by interpenetrating skeletons. 

Presented in the figure is a comparison between (2.8) and (2.9) and experimental mea- 
surement results for the conditional yield point of a copper matrix-sintered tungsten powder 
composite [6]. Curve 1 corresponds to (2.8) and 2 to (2.9). The experimental values are dis- 
played by points. 
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