f+r=4P2(1~-§ p2> (1~% 112)_1 (]/ 1—%11'“’—1)>“.

There follows from the boundary condition (3.1)

. T 1\
ln*{z:—2MqV1——“3—p2(1—3‘p2} .

The normal pressure on the wedge face is expressed in the form

G':‘lﬁ'—l_k 1*121?—-‘ _1_-
22 p2 p‘.}( 3P>na I‘O<1\I)-
The pressure change on the wedge face 1s shown in Fig. 3 for p® = 0.3 and ¢ = 0.1 as a
function of the velocity of wedge penetration. We obtain the minimal pressure in the elas-
tic solution for M* = 1.18. As M decreases and increases the pressure rises. At the value
M? = 99.82 plastic flow sets in at the wedge face (the domain bOc in Fig. 1) and the pressure
growth is terminated. For M? = 100.20 plasticity sets in even in the domain aOb. Later the

pressure grows in proportion to M as M increases.
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THEORY OF IDEAL PLASTICITY OF MULTICOMPONENT MIXTURES

L. A. Saraev UdDC 539.4

1. We consider a rigidly plastic micro—inhomogeneous isotropic medium consisting of n
different components interconnected by ideal adhesion. Let the plastic properties of each
component be described by the surface flow taking the hydrostatic pressure into account

2 __ g2 _
8355 T a0 =hy, s=1,2,...,n,

where Sijy = Oq; — dijopp/B,.oij is the stress temsor, kg are the component yield points, and
ag are paramet%rs characterizing their volume compressibility.

The structure of such a medium can be described by a system of random indicator functions
of the coordinates #1(T), %o(T), ...y %, (1), from which each function % (r) equals unity on a set of points
of the s-th component and equals zero outside this set. By using these functions the local
associated flow law of the composite material under consideration can be written in the form
[1] &;5 (1) — §;;0 (1) €op (r)

0y (1) = k(1) :
7 V e ey (0 —b () e, ()

(1.1)

n
where ej4(r) is the strain rate tensor; k(r)= 3k, (r); and
§=1
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pp. 157-161, November-December, 1984. Original article submitted August 29, 1983.

0021-8944/84/2506- 0949$08.50 © 1985 Plenum Publishing Corporation 949



b(r) = 3 b, (r); by = (3a,—1)/%,.
§=1
All the functions wus(r), the stress and strain rate tensors are assumed statistically homo-
geneous and ergodic fields, and their mathematical expectations agree with the components aver-
aged over the volumes Vg and over the total volume of the medium V =V, + V, + ... + V, [2]:

<(...)>=T§..S'(...)dr, <(...)>s=—$:j' (de s=1,2m.
VS

vV

We replace the dissipative function by its mean value D = <01j€ij> in the total volume V
in (1.1) for the associated flow law of the medium. This assumption linearizes the relation-
ship between the local stochastic stress and strain rate fields, and the relationship (1.1)
takes the form [1]:

Do () = k¥ r)e; 5(r) — KATB(E)S, j2  (T). (1.2)
Substituting the local governing equations (1.2) into the equilibrium equation 0ij,7 = 0,
we obtain ]
e ke . —1..=0,
1%, T *1%1%pp, j.d
. N (1.3)
. 21 _ 12 2
— T 2 [ki] %855 0;; > ["gbs] %sEpp [ks] =k — K,
s=1 §==1
[k;bs] = k;bs-— k3b,, the primes denote fluctuation of the quantities in the volume V. Append-

ing the Cauchy formula 2eij = Vi,j + vy,is relating the displacement velocity vector components
vi(r) to the strain rate tensor components, to (1.3), we obtain a closed system of equations
for the flow of a multicomponent mixture for which the boundary conditions are the conditions
of no fluctuations of quantities on the surface of the volume V. We introduce the Green's
tensor

14 {—b

8nk§ (‘Sik’,pp - T_'.Tll" ",ih), r=ir|,

6D (r) =

ik

which is used to reduce the equilibrium equation of the medium to a system of integral equa-
tions {1]

’ I
g;; (1) = Y G(i&,l)i (r—r ) Ty (xg) 97y (1.4)
v

To determine the effective constants of the multicomponent mixture, a relationship must be

established between the macroscopic stresses and strain rates. Let us take the average of

the relationship (1.2) over the whole body volume V and let us apply the rule of mechanical
mixing of the phases

Doy = Elkg"s (€&:5>s — 8ijbs Cepp)s)» (1.5)

where cg = VgV™* are the bulk contents of tine components. Equations (1.5) show that to estab-
1lish a macroscopic rheological law it is required to calculate the strain rate averaged over
the component volumes and the mean energy dissipation density D. The quantities <ejj>g can
be found from the relationships [3]
__] ? s
(8ijs = (85 T 6 (Hekij)e (1.6)

Let us calculate the quantity (xgy) . We multiply (1.4) by %(r) and take the average over
the whole volume V:

s e (1 r’ ’
Sngyyr = S\ G 0j (r1) g (1) T (r 1)) e
v

In evaluating the integral on the right side, we limit ourselves to a singular approximation
by omitting the formal parts of the second derivatives of the Green's temsor; then {3, 4]

Oty = (o — By 8n) <sTud 43 1.7
Here a:= 2(4 — 3b;)/15(1 — b,); B, = (1 — 2b3)/15(1 — b,1); Iijkl is the unit tensor. Sub-
stituting the expression for Tij into (1.7) and extracting the volume and deviator parts, we
find

n
(u;e'“) =—a, 3 [#7] (hghseiid KD (1.8)
§=1
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n

<"';€;w>:_ oy, —3,) 2([ J 3[4 s])(";”sewwl‘i’

s=1

where €ij = £ij "”(1/3)5ij€pp- Eliminating the quantity (x}%} from (1.6) and (1.8) and taking
into account the relationships

(e

chs(<f>_<f>g——<f>s>v q#sa
s (XD (1 —2¢)<0%), g=5

—Celsr g 8,

r
AR =
Bty {”s(i—cs)’ g =25,

we express the strain rate components averaged over the volume in terms of the macroscopic
quantities
e a1D<s7.]~>—',—(l—oc1) k(e
iji2e 2 2 ’
e Wy [1]
12 1. 9
(e 71D <Gpp> + kj {1 —3b)) (1— Y1) <SPP> ( )
= 2 2 1
prad K (L —3by) + v, ([g] — 3 [#3%])
1= (3by — 1)/3(b; — ).

Substituting (1.9) into (1.5) and separating it into volume and deviator parts, we obtain

(1—a) 4, (t—v,) B, 110
D<%>=kf1_aA hHT D@m>—ﬁa”ﬂ%)1—vB (Epp)- ( )
Here " n
—~ e, B{1—3b)c,
Aﬁzkz “ 2 12 (1 —3b - ([kz]——3[k'-’b ])
s=1 1+a1[ks s=1 1 - )+?1 s 578

We now evaluate the gquantity D. We use the equilibrium integral equation for the medium,
written in fluctuations

1371

8‘08 dr =0, (1.1
4

from which D = <ojj><ej;> follows. Hence eliminating the mean strain rates <ejj>, and from
(1.10) also, we find the macroscopic flow surface of the medium

(5, <50 a¥C0, 0% = k2, (1.12)
Here
N (1—a) 4, (1—v,B)
K [ ]) 1, g% = 4 1 171 1.13
1V T4 3(1—%111)(1—\;1)(1—3171)131 (1.13)

are the effective yield point and a parameter characterizing the macroscopic compressibility
of the composite material.

Formulas for the effective constants k*, a* show that the model constructed corresponds
to a composite medium for which the first component is the binding matrix while the remaining
components are distributed therein as separate inclusions. Thus, if we set k; = 0, then k*
vanishes identically, but if k, # 0, then for any kg = 0 (s = 2, 3, ... , n) the effective
yvield point is not zero identically. For n = 2 the formulas for k* and a* agree with the ex-
pressions for the effective constants of an ideally plastic two-phase medium obtained in [1].

As a particular case of the general formulas (1.13), we consider a porous medium whose
plastically incompressible host material contains an absolutely rigid inclusion. Let V, be
the volume of the host for which a;=0, a;=0.4,y;=1; V, is the pore volume (k,=0), Vs is
the volume of the rigid inclusions (ksz>«). Then A;=c;+2.5¢c5, B;=c;+ cs, and the flow
surface for such a medium takes the form:

¢ 2———..0 3c 3(2—2 L3
2 ( + 2 3¢ €y - 3¢5)
i S+ l{\l-—c\(b-——éc ——3c)<6pp> =K 5T e, —3c, (1.14)

For ¢s = 0 (no rigid phase), Eq. (1.14) agrees with the expression for the flow surface of
a porous medium [1].
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Fig. 1

2. In constructing and fabricating multicomponent composite materials, the binding host
can be formed by several rather than just one component. For example, a material is obtained
as a result of impregnating sintered tungsten powder by a copper melt, in which both phases
form a splicing of interpenetrating skeletons. The formulas (1.13) cannot describe the be-
havior of such multicomponent media. Another method of taking the average of the system of
equilibrium equations is required to estimate their mechanical properties [5].

We separate all the components of the composite materials into two groups by consider—
ing that the first m components possess an identical coherence and form a matrix of inter-
penetrating skeletons while the remaining n — m components are distributed in this matrix in
the form of individual inclusions. Denoting the mean values of the constants in the matrix
volume by

m m
{kz} = E kics' {k2b} = 2 kzbscs’
s=1 s=1

we write the system of equations (1.13) in the form

(¥ el — Fe) gy — B 5 =0 (2.1

m n
2 ’ I
— Ay = X B {8y — 8,50:8pp) % T X s (g5 Oybaepp) #er
s=1 S=m-+1

»

By using the Green's tensor

__1 r —'iﬁ:{k—zb}‘ T
R = o)

the system (2.1) is reduced to a system of integral equations
e (N= S Gitnni (T — T9) Dy (Ty) Ay (2.2)
v
Evaluation of the quantity (nk%) by using the singular approximation hypothesis in (2.2) yields

Ctlelyy = (o (rabiyd — 8538 (rihipy ) /U7 (2.3)
Here

= (2/15) ({#*} — 3 {2}/ (") — {#7)),
B = (1/15) ({#*} — 2{KB})/ (K"} — {#°0}).

We determine the strain rate components averaged over the volume from (1.6) and (2.3)

oD (s;5 + (1 — @) {K} ¢eis>

s = 7 (17 (14 a {m,—1)) (2.4)
WD (0 + (1 =) ({7} —3{¥"}) Ce,p)
(Eppds = (2 —s{K)) 1+ v (g, —1)

Here
my = R/ g, = (K — 312,) /(%) — 3 {k%});

p = ({8} — 3{k%})/3 ({#*} — {¥"}).

Substituting (2.4) into (1.5) and extracting the deviator and volume parts result in the ex-
pressions

952



D<S”> {L' }{12} A< lJ>
—v)B
S{A“b} yB< vp)"

(2.5)

D (o) = () = 3 {4} oy

Here
1]. (1-——31)\0
A=
zi—f-a(m——i 2‘1+’Y\q —-1)

The macroscopic flow surface of the medium is found by eliminating the quantities D and <efq>
from (1.11) and (2.5), and has the form (1.12). The effective constants of the composite
material are determined from the formulas

. 2 1——a)A
k ‘/[{L}{kﬁ- (2.6)

. u—o{¥} a({#*} —3{~k2b} — yB)
T3¢ —y({#*} —3{#"}) B({#"} — ca)’

As a result the effective constants of a porous medium whose host material is formed by
two plastic incompressible interpenetrating components can be obtained from the general for-
mulas (2.6). Settingm= 2, n =3, a;, =a, = 0, ks = 0 into the relations (2.6), we find

We—toy/ 15p (3¢ + p’q) ,
t 5 (2p + 3¢) (2pg 4 3v)'— 10v (3v + pq) (2.7)

4 C
a*=k*2(1—v)/6pk§u2, qzkg/ki’ p:._l_:};q—z, v=1—e¢

g°

Let us apply (1.13) and (2.6) to a computation of the effective yield point of a two-
phase medium whose compoments are plastically incompressible. Setting a, = a» = 0 into (1.13)

and (2.6), we obtain the quantity a* = 0, from which there follows that both composites are
macroscopically plastically incompressible. Moreover, the relationships

2 2 )
@, =a=04 {¥}=")=ck +ck

1 ‘a2’
5 R . 502k§
me= B/t eR) A=ty
5(' k2 5021.72

A=

2+5W'—“ 2F5(m, —1)
hold. The macroscopic flow surface (1.12) takes the form

<8y 268y = k*2,

k*:kll/i_{___sf_z_(@i)_ (2.8)

5k2 - 2¢, (k2 - k2)

where

is the effective yield point of the composite with individual inclusions, and

2cc, (k2 — k%)
k* = 12 2o— 2 2.9
1/1 e T e 2.9

+Czk2)+2 (6, ¢) (kg '—ki)

is the effective yield point of a composite material formed by interpenetrating skeletoms,

Presented in the figure is a comparison between (2.8) and (2.9) and experimental mea-
surement results for the conditional yield point of a copper matrix-sintered tungsten powder

composite [6]. Curve 1 corresponds to (2.8) and 2 to (2.9). The experimental values are dis-
played by points.
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